
Quantum electrodynamical theory for the natural shape of the spectral line

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 5665

(http://iopscience.iop.org/0305-4470/24/23/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) 5665-5674. Printed in the UK 

Quantum electrodynamical theory for the natural shape of the 
spectral line 

V M Shabaev 
North-Western Extra-Mural Pdytechnical Institute, Khalturin Street 5,  Leningrad, 191065, 
USSR 

Received 18 February 1991, in final form 9 July 1991 

Abstract. In order to study the natural spectral line shape in the framework of quantum 
electrodynamics the resonance photon scattering on the relativistic few-electron atom is 
considered. The general case of the few overlapping levels is studied. In the resonance 
approximation the calculation formulae for the differential and total scattering cross- 
sections are obtained. The equations allowing improvement of the resonance approximation 
are also derived. 

1. Introduction 

For the first time the shape of the spectral lines corresponding to transitions between 
the levels of a non-relativistic atom has been considered.by Weisskopf and Wigner [ l ]  
with the use of quantum mechanics. A consistent theory of the spectral line shape can 
be developed, however, only in the framework of quantum electrodynamics (QED). 

Such a theory has been constructed by Low [Z] for the one-electron atom. Low 
considered the resonance photon scattering on the atom in its ground state. This 
avoided difficulties in the choice of the initial conditions. The Low method is renormal- 
izable and it allows improvement of the resonance approximation. 

In recent years interest in the QED theory of the spectral line shape has greatly 
increased [3-71 in connection with the astrophysical and laboratorial investigations of 
the multiply charged ions in which the QED effects can be considerable. Investigations 
of the spectral line shape of the multiply charged ions are especially interesting in 
connection with the fact that in the spectra of such ions the two overlapping levels 
with equal quantum numbers can be found [4,5,7]. 

The natural shape of the atomic spectral lines of the relativistic few-electron atom 
was studied in [3-71. So the decay of the system prepared at the time f = 0 was studied 
with the use of the adiabatic formalism of Cell-Mann and Low in [3-51. The time 
development of quasistationary atomic levels was considered by using the technique 
of Green functions in [ 6 ] .  The spectral line shape was also considered with the help 
of the method based on an expansion,in the number of the particles [7]. 

Since in these works [3-71 the decay of the atomic state produced at the time f = O  
is considered, the problem of the correct choice of the initial conditions arises. This 
problem, to my mind, is especially relevant in the case of the overlapping levels with 
equal quantum numbers. In order to avoid this problem, in the present work the whole 
process, starting from the formation of the excited atom and finishing with its decay 
to the stable products, is studied, i.e. the scattering of the stable particles with formation 
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of the intermediate unstable ones is considered. In such a process we consider the 
resonance photon scattering on the relativistic few-electron atom, i.e. the Low results 
are generalized in the case of the few-electron atoms. In principle, our approach is 
also applicable for the other possible cases of the formation of the excited atom, 

In QED, as is known, the transition from the one-electron atom to the few-electron 
atom is not trivial and requires special methods. The present work is based on the 
Green function method version proposed in [ 8 , 9 ] .  

In section 2 of the present paper, perturbation theory for the calculation of the 
relativistic few-electron atom is formulated. In section 3, the reduction formulae for 
the amplitude of the photon scattering on the few-electron atom are derived. The 
resonance scattering and the natural spectral line shape are considered in section 4. 

2. Perturbation theory for the calculation of the relativistic few-electron atom 

For simplicity, we shall suppose that in the zeroth approximation the electrons of the 
atom considered in the framework of QED interact only with the Coulomb field of the 
nucleus (the Furry picture). This corresponds to the case of the multiply charged ions 
(the relativistic few-electron atoms). In the case of the heavy atoms the Dirac-Fock 
approximation can be used as zeroth order [lo]. This leads to the appearance in the 
Feynman diagrams of the vertices corresponding to the interaction of the electrons 
with the additional external field - VHp. 

For the description of the relativistic few-electron atom we consider the -Green 
function of the N-electron system in the external field of the nucleus 

( 1 )  

where +(x) are Heisenberg field operators for the electrons, $=@+-yo, T is the 
time-ordered product. In what follows, we shall work with the Green function in the 
mixed representation 

G(p:', . . . ,p$; p y , .  . . , pk) = ( 2 ~ r - * ~  

G(x:, . . . , xL; x,, . . . , xN) =(OlTJl(x:). . . Jl(xL)$(xI). . . $(xN)IO) 

m 

dxy , , . dxk  dx;'. . . dx$ I-, 
,o ,O 0 0 0 0  x exp(ip:Ox:O. . . + ipNxN - ip,x, . . . -ipNxN) 

x G(xi0, . . . , xg; xy,. . . , xk). (2) 
10, 0 For the Green function G(  pi", . . , , pN.  p,, , , , , p k )  the following Feynman rules take 

place: 
(i) External electron line 

where 

Jl,,(x) are solutions of the Dirac equation 

(We use relativistic units h = e  = 1.) 
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(ii) Internal electron line 

(iii) Separate electron line, which is not connected with the others 

(iv) Internal photon line 

where D,,(w,x-y) is given by 

exp(ik(x-y)) dk  
02-k2+i0  ( 2 ~ ) '  D,Ao,x-y)=-g,, 

~. 
in Feynman gauge. 

(v) Vertex 

-iey,2?rS(w,-w2-w,) dx. 
w3 I 

(vi) Symmetry factor where P i s  the panty of the permutation of the outgoing 
electrons with respect to the incoming ones. Minus sign for every closed fermion loop. 

We note that we are constructing the perturbation theory with the usual  vacuum. 
T h e  transition to the hole formalism in which the closed shells are considered as the 
vacuum can be carried out by changing the sign of io in the electron propagator 
denominators corresponding to the closed shells. 

Let us consider the atomic energy levels E"', . . . , E'"' coming from the m-multiply 
degenerate unperturbed level with the energy E''' (the case of the quasidegenerate 
levels can be considered in the same way). We assume, as usual, that the value of the 
splitting of the level E"' due to the interaction is much smaller than the distance from 
the other levels. The unperturbed states corresponding to the level E") form the 
m-dimensional space Cl, the projector on which we designate by Po= Xp=, uku:, where 
uk are the unperturbed wavefunctions. 

To exclude the variables of the relative energies in the Green function we introduce, 
following the idea of quasipotential approach [ll], the Green function g 

g(E)S(E - E') 

dpy ... d p k d p ;  O... dp$S(E-py ...-PO,) S(E'-p;  ' . . . - p $ )  

In the zeroth approximation one can obtain 
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The spectral representation of the Green function g( E)  gives 
m t 

k = ,  E - E"' (4) 

It is clear from the definition of g ( E )  that the vectors {9k}x"=, belong to the space n. 
We now construct the perturbation theory in the Rayleigh-Schrodinger form in a 

manner similar to what was done in the operator theory by Nagy and Kato [12-14]. 
Choosing the integration contour r so that it surrounds the levels E"', , . . , E'"' and 
does not surround the other levels, we obtain the equation [8, 91 

g ( E ) =  x - "k'pk +terms that are regular by E - E'''. 

HPu, = E'k'PVh ( 5 )  
where 

( u k ] T = ,  is the set of the vectors that are biorthogonal to the set (rpk]T=,, i.e. 

"p:vk.=sk.k. .  

u:PU,.= S k h . .  (6 )  

From this we obtain the normalization condition for ok 

The condition of solvability of ( 5 )  gives the equation for the determination of the 
energy levels of the atom 

det( HP - EP) = 0. (7)  

Introducing Ag = g - go we obtain 

where Ag;k = utAguh.  For an undegenerate state n (8) gives 

Equation ( 5 )  with the normalization condition (6) can be transformed to the 
Schrodinger-like equation 

H * ~  = E ( ~ ~ + ~  (10) 

with the normalization condition 

* l @ k ' =  sk,k' 

where 
$hk = P'/*Vk ~= p - ' / 2 ( H p ) p - l / 2 ,  

The calculation according to formulae (3), (8) and (9) can be simplified in the case 
of the diagrams in which the N-electron states out of Cl are not encountered as 
intermediate states. We shall call this diagram irreducible. It is clear that the contribution 
in Ag from this diagram can be written in the form 

Agd E 1 = gdE ) f( E )go( E ) 
where ? ( E )  is an operator that is regular by E - E'". From this it follows that a 
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non-zero contribution to the integral 

can be obtained only from those terms in which by integration over the variables 
py, . . . ,PN, PI , . . . , p z  after the disappearance of all the 8-functions only the residuals 
in poles coming from the states out of Cl are taken into account. In reality, the same 
simplification can also be made in the case of the reducible diagrams. 

By the derivation of formulae (5)-(11) we assumed that the Green function has 
the isolated poles corresponding to discrete states of the atom. In reality, because of 
zero photon mass the Green function g ( E )  is regular in the complex plane E with the 
cuts beginning from the discrete energy levels. To make our formulae (5)-(11) correct 
we introduce a photon mass p. We suppose that the photon mass p is much larger 
than the distance between the considered levels and much smaller than the distance 
from the other levels. In every order of the perturbation theory after taking into account 
the whole gauge-invariant diagram set both the energy levels E'*' and the operator H 
in (10) will be regular by PLO. It follows that at the end of the calculations we can 
set p = 0. 

In concluding this section we note that (5)-(7), (10) and (11) are also suitable for 
the case of quasidegenerate levels. 

0 ro 

3. Photon scattering on the atom 

In the framework of the formalism considered in the present work we shall derive the 
reduction formula for the amplitude of the photon scattering on the atom. 

In order to avoid difficulty in studying the external lines in the S-matrix we .shall 
suppose, following [15], that the interaction with the Coulomb field of the nucleus is 
not included in the unperturbed action. Thus, in the Feynman diagrams the vertices 
in which the line corresponding to the Coulomb field joins with the electron line 
appear. Since in our case the Coulomb field is strong we shall sum up over all insertions 
of the vertices with the Coulomb field in the electron lines. In that way we replace the 
propagators and the wavefunctions of the free electron with the propagators and the 
wavefunctions of the electron in the Coulomb field. The constants of the renor- 
malization, Z, and Z , ,  will be the same as for the theory without the external field. 

Let us consider the scattering of a photon with the momentum k; and the polarization 
si on the relativistic few-electron atom in the state m. As the result of the scattering 
the photon with the moment k, and the polarization E, arises, and the atom comes to 
the state n. The transition amplitude is [ 161 

Sn,7,;m.7g = (n l~ou. t (kf ,  ~ , )aL (k  
e * k , . ~  

= Discon. term - 2;' j d4y d4z 

E:e-+  (n l  T(j, ,(y) jJz))Im) = Discon. term 
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where j,(x) = (e/Z)[&x)y,, +(x)] is the electron current operator, Im),  In) are vectors 
of the initial and final states in the Heisenberg representation. T h e  first term in the 
right-hand side of (12) corresponds to the case when the photon does not interact with 
the atom. We are interested in the second term, which corresponds exactly to the 
photon scattering on the atom. Let us designate it by ST;;,m,y,, 

In  order to derive the formulae for Sin;;,,,,, we pick out in the scattering amplitude 
the term corresponding to the photon scattering only by external field. With this in 
mind we write 

(4 Tj(y)j(z)lm) = (nl( Tj(y)j(z) - (01 Tj(y)j(z)lo))l m ) +  S.,(ol Tj(y)j(z)lo). (13) 

Here the second term corresponds to the photon scattering only by the external field, 
and the first term corresponds to the scattering by the atomic electrons. For the 
calculation of the contribution in the scattering amplitude from the first term which 
we designate by (nlTj(y)j(z)[m)con we introduce the Green function 

S(E + kf - E'- kj)g;,:,( E', E, kj)  
m 1 

N !  
=- Pr' I_, dpy . . . d p k  dp:'. . dp$ 

Here U,, U. are the vectors of the initial and final states of the atom, respectively. They 
are determined by (5) and (6). When constructing the Green function gg;, according 
to the perturbation theory the external photon line has to join at least with one of the 
atomic electrons; therefore, the residual calculation in formula (16) is quite correct. 

The diagram technics rules for GY,;, are .different from the rules for G by the 
presence of the incoming photon 
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and the outgoing photon 
~j e -i 'F - m. 

The contribution to the scattering amplitude from the second term in (13) can be 
calculated separately. It is 

4. Spectral line shape 

Lei us consider the photon scattering on the few-eiectron reiativistic (Z-iut ii0, 
where Z is the nucleus charge) atom in its ground state in the case E,+k?=E;",  
where E, is the ground state energy, kp is the energy of the initial photon, El" is the 
unperturbed energy of the excited level which under the effect of the perturbation is 
split into the levels E!" .  . . E!'). For the photon scattering amplitude on the atom we 
have reduction formulae (14)-( 17). In the non-resonant case (E, + k p z  €io') the Green 
function CY?, in these formulae can be calculated using the perturbation theory 
according to the diagram technics rules. In the resonant case this calculation leads to 
singularities which follow from the fact that the energy denominator coming from the 
intermediate green function is equal to zero in zeroth order. We must, therefore, 
calculate the intermediate Green function more exactly. For this purpose let us assume 

g;.;,(E', E, k j )  

= f ,(E')R$;'(E',  kj ,  E + k p ) & ( E +  k p ) R c ' ( E +  kp; kp, E )  

x ~ , ( E ) + A g ' " " ( E ' ,  E, k j )  (18) 

where g,,l= ( i / 2 ~ ) g , , ~ ,  gl,, is determined from (3) with the corresponding projectors 
P(ll), P(l'); kp+E = k j + E ' ;  Age""(€', E, k j )  is the Green function part that is regular 

perturbation theory. By using the spectra representation for g, we obtain 

ST?, = ZT16(k?- kp)p:R:;'(E,, kj ,  E ,  + k?)&(€l+ k?) 

x R ~ ' ( E , + k ~ ,  k p , E , ) p , + Z ; ' S ( k j - k ? )  

by E+kp=Ei, nAe opcrztor. .,~, RC-1 , ..l, R(+' _." S I P  m n c t n a r t d  -"._ 1..--.-- ----..-...~ ~ r m r r l i n o  (1R) --, hv -, iirine ""...6 

We now consider separately how the Green function $ ( E , + k ? )  in (19) can be 
calculated. Let us introduce the quasipotential V ( E )  by 

& ( E  1 = do'( E )  + gl"'( E )  V ( E  )g t (E )  (20) 

where g p ) ( E )  = P/o'/!E - E p ' ) .  The quasipotential V ( E )  is constructed by using 
perturbation theory according to (20). We shall calculate the Green function in (19) 
by 

(21) 
I 

$ ( E )  =- ( E  -E;"- v(€))-'. 
2?r 
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I t  has poles in the second sheet of the Riemann surface some lower than the right real 
semi-axis and does not have singularities by a real E. Thus if in formula (21) we do  
not neglect the quasipotential and take it into account at least at the lowest approxima- 
tion ( V ( E ) =  V(Eio')) ,  the calculation of the resonance scattering amplitude is quite 
correct. 

We now consider the calculation of the resonance scattering amplitude in the lowest, 
resonant, approximation. Let us introduce % by 

(22) i q E \ G ) j ,  

It is clear that % is not Hermitian and thus it has complex eigenvalues. We assume 
that % is a simple matrix, i.e. its eigenvectors form the full basis in the space 0,. Let 
us designate its eigenvalues by E!'), right eigenvectors by qni, left eigenvectors by pL, : 

(23) %qR,  = d:%= E,"qLr. (. + 

The vectors qn,, qL, are normalized by the condition 

' 9 : ,%tk=Sik  (24) 

and satisfied the completeness condition 

1 q R , r p t , = I .  (25) 
i - ,  

For g1 we obtain 

In fact, due to T-invariance %;k = Zkj. It leads to orthogonality of {qn,)l=,  in the 
symmetric metrics (without conjugation) E&, qpkq)q$J = [6]. In this metrics the 
relations of orthonormality and completeness have the form 

However, in what follows we shall use the right and left vectors keeping in mind that 
@pi?) = &).. . -, . . ., 

Substituting (26) in (19) in the lowest (resonant) approximation we obtain 

where uI is the around state wavefunction of the atom in zeroth order, the operators 
RL;,;, RC.!,, calculated by using ( la) ,  in the lowest approximation are 

Finally, we write the formulae for the cross-sections in the resonant approximation. 
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for the differential cross-section we obtain 

where 

E,  = Re E;" r, = -2 Im E!'' 

(lIfi:lR,)= d i l c p , ,  (L , I ioI l )=d , i ,u , .  

For the total cross-section by using the optical theorem we obtain 

Let us discuss, for simplicity, the case of two overlapping levels (s = 2). The second 
term in formula (32) is not equal to zero only in the case of the overlapping levels 
with equal quantum numbers, i.e. in the case when the states corresponding to the 
overlapping levels are not 2utually orthogonal in the usual metrics (with conjugation). 
In the contrary case Im((llR;(k,, e~)~Rr)(L,~R0(kj ,  ~ ; ) l l ) )  = O  and the total cross-section 
is the sum of the Weisskopf-Wigner type terms. In the differential cross-section (31) 
the second term, generally speaking, is not zero in both cases. 

In the case when the one quantum transition to the ground state is the main channel 
of the decay of the excited state of the atom formula (32) gives the spectral line shape 
corresponding to this transition. In this case formula (32) can also be obtained by 
integrating the differential cross-section du, given by (31), over the final states of the 
emitted photon. 

5. Conclusion 

We derived our formulae (31) and (32) in the general case of the few overlapping 
levels including the case of the levels with equal quantum numbers. But, in fact, among 
the single excited states of the multiply charged ion there are no overlapping levels 
with equal quantum numbers. Thus, the second term in the right-hand side of formula 
(32) is equal to zero. Overlapping levels with equal quantum numbers can arise in the 
case of double excited states, for example, (2s,,,2s,/,), (Zp&'p,/,) [ 5 ] .  In order to 
study the spectral line shape of these states one can consider a process of the capture 
of an electron by an one-electron ion with the formation of the double excited states 
and the following decay of these states. Such processes were studied before in the 
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framework of the quantum mechanical scattering theo'iy 117, 181. The total cross-section 
of this process is the sum ofthe dielectronic recombination and the radiative recombina- 
tion cross-sections and the interference term. The dielectronic recombination cross- 
section for the process of the capture of an electron by Pbsot as a function of the 
energy of the electron was calculated recently [19]. According to these calculations 
the levels with equal quantum number ( ( 2 ~ , / ~ 2 ~ , / ~ ) ,  (2p,/,2p,/,)) in PbsO' are not 
overlapping. But, according to preliminary calculations for U90+ [20] one can expect 
that the relative magntidue of the difference between the common line shape of these 
states and the sum of two Lorentz contours reaches 20%. In this connection it seems 
important to consider this process in the framework of QED. The formalism proposed 
in the present paper is quite suitable for this purpose. The detailed analysis of this 
process will be considered in a forthcoming paper. 
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